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Abstract—The steady state and the stability behaviour of a double-diffusive natural circulation loop are
investigated theoretically. The fluid in the thermosyphon consisting of two vertical channels is subjected
to both temperature and salinity gradients. The governing equations of continuity, momentum, energy
and mass diffusion are written based on a one-dimensional model for laminar flow. The steady-state
solutions include the trivial ‘conductive’ one of no flow in the loop, » = 0, and ‘convective’ flow solutions
when the thermal Rayleigh number, Ry, exceeds a critical value, Ry, which depends on the saline Rayleigh
number, Ry, and the inverse Lewis number, ¢. In a certain range of system parameters double ‘convective
solutions’ are obtained. The results of linear stability analysis show that the one with lower v is always
unstable and all the other steady flow solutions are stable. The stability chart in the plane Ry R, derived
by this analysis, also includes a description of instabilities associated with the onset of motion from rest.
The marginal stability boundaries include the monotonic marginal stability lines (MMSL) R; = 6+4¢Rq,
and oscillatory ones (OMSL) which depend also on the Prandt] number and bifurcate from the MMSL.
An interesting phenomenon, exhibited from the solution, is that the OMSL intersects the line Ry,
representing the critical conditions for existence of steady flow solutions.

1. INTRODUCTION

THE FELDS of natural circulation loops (ther-
mosyphons) and double-diffusive processes have
gained increased interest in the last two decades.
Flows with both phenomena appear in energy con-
version systems and in geophysical processes, and
exhibit various kinds of instabilities, e.g. refs. [1-5].
Although several thermosyphons involve diffusion of
both heat and mass (i.e. in solar energy systems and
in nuclear reactor cooling loops), not much work has
been done, to date, on double-diffusive processes in
natural convection loops. The only available studies
are those of Siegmann and Rubenfeld [6, 7], Hart [8]
and Zvirin [9].

Three distinct types of instabilities have been found
(experimentally and theoretically) in thermosyphons,
except for the local formation of ‘classical’ Rayleigh—
Bénard closed cells :

(a) the onset of flow around the loop ;

(b) instability of a steady loop flow;

(c) multiple steady-state solutions, i.e. meta-stable
equilibrium states.

All three types, associated with global flow around
the loops, have been discussed in ref. {10], including
the controversy in the literature about critical con-
ditions for the onset of motion. It is noted that natural
circulation loops exhibit, in addition, the ‘peculiar’
chaotic behaviour of transient flows [8,11-13].
Siegmann and Rubenfeld [6] obtained a critical con-
dition for the onset of motion in a toroidal loop with
temperature and concentration gradients. In their
analysis, however, they neglected the thermal and
saline diffusivities and defined Rayleigh numbers

based on heat and mass convection coefficients
between the fluid in the loop and the surroundings.
Hart [8] studied the same system with the inclusion
of diffusion and thermal diffusion (Soret effect) but
neglecting, again, thermal conduction. He also found
chaotic transient behaviour which was previously dis-
covered in loops with temperature gradients only [11-
13]. Critical conditions were derived in refs. [12-14]
for initiation of flows in thermosyphons with a single
gradient of temperature, using a similar approach.

The thermal and saline diffusivities must be
accounted for in problems of flow initiation from a
rest state, where the convection slowly develops from
zero. Moreover, the first two effects are the sole mech-
anisms for heat and mass transfer in an insulated
channel just prior to the onset of motion [15]. Zvirin
has derived correct critical conditions for the stability
margins of vertical single-channel and multi-channel
thermosyphons [10, 16] and a toroidal loop [17], tak-
ing into consideration these diffusivities. The results
of the latter indicate, indeed, that the previous analy-
ses [6-8, 12-14] may be regarded as approximations
for large values of the Rayleigh and Biot numbers.
Zyvirin [9] investigated a double-diffusive vertical ther-
mosyphon, and found multiple steady-state solutions.
His study did not include stability analyses of the rest
state and the steady flows.

The present work is a theoretical investigation of
the stability of a vertical loop with double-diffusive
processes. The characteristic stability equations are
derived from the continuity, momentum, energy and
salinity conservation equations, by the linear stability
analysis. Critical conditions are obtained for the onset
of motion from the rest state, and the stability margins
of the multiple steady solutions is determined.
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NOMENCLATURE
a  radius of pipe Greek symbols
B function of the steady velocity, equation Bs saline expansion coefficient
(15) Br thermal expansion coeflicient
F  function of v and o, equation (25a) ¥1.» parameters, equation (22c)
f friction coefficient d,, parameters, equation (23c)
G function of v, ¢ and o, equation (25b) #  dimensionless temperature, equation (7)
g  acceleration of gravity A parameter, equation (26c)
K solute diffusivity 4 parameter, equation (26¢c)
K; thermal diffusivity v kinematic viscosity
L height of the loop p  density
M  steady-state temperature distribution, o stability parameter
equation (13a) T time
N steady-state salinity distribution, equation ¢  dimensionless salinity, equation (7)
(13b) ¥  temperature perturbation
P modified Prandtl number, equation (12) w  salinity perturbation.
g  inverse Lewis number, equation (12)
R; modified saline Rayleigh number, Subscripts
equation (12) c critical (Rayleigh number)
R; modified thermal Rayleigh number, D lower container
equation (12) S related to salinity
S salinity T  related to temperature
T  temperature U  upper container
t dimensionless time, equation (7) 1,2 channels with upward and downward
u  velocity perturbation flows (except for the parameters v, ,,
V  velocity 61.2)-
v dimensionless velocity, equation (7)
w  oscillation frequency, Im (o) Superscripts
Y  complex function, equations (24) and (27) * bifurcation of monotonic and oscillatory
Z  vertical coordinate marginal stability lines
z dimensionless vertical coordinate, () steady state.
equation (7).

2. THE THEORETICAL MODEL
AND GOVERNING EQUATIONS

Figure 1 describes schematically the loop analyzed
here: two insulated} channels connecting two large
containers, with constant temperatures and salinities
T, Sp and Ty, Sy. The density of the fluid in the
loop depends on both temperature and salinity

p = pull =B (T—Ty)+Bs(S—Su)] 1

where frand B are the thermal and saline expansion
coefficients. The Boussinesq approximation is used,
i.e. the density and all the other fluid properties are
taken as constants in the governing equations except
for the body force term in the momentum equation.
It is assumed that the effects of surface tension and
local pressure drops at the connections between the
channels and the containers can be neglected, i.e. the
pipes are wide and long enough. The length of the
channel also enables the assumption of constant

+The effects of heat fluxes through the side walls are
discussed at the end of Section 4.

Tu. Sy

—= 20

Tp, So

FiG. 1. A scheme of the vertical thermosyphon with double-
diffusive processes.

boundary conditions. This requirement might be hard
to realize in an experimental system for the inves-
tigation of stability and oscillations of the steady flow
unless the pipes are long and the connections are care-
fully designed. However, the main interest in the
present study is the conditions associated with the
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onset of motion from rest. For this the constant
boundary conditions can easily be arranged. Moreover,
laminar flow can be considered, and according to the
results of refs. [18,19] we can adopt a one-dimen-
sional model, with the friction coefficient taken as
that for forced flow, i.e. f= 16/Re = 16v/2aV.

It follows from these assumptions and from the
continuity equation that the velocity in the loop is a
function of the time, 7, only having the same mag-
nitude in the two branches

Vi@ = V(1) = V(1) @

where the subscripts 1, 2 denote channels with upward
and downward flows, respectively.

The momentum equation is integrated around the
loop to eliminate the pressure terms, as usual in treat-
ments of thermosyphons, cf. refs. {1,2,8-10]

dV g 8v

where Z is the vertical coordinate and the above-
mentioned friction correlation has been used in the
last term of equation (3). The energy and diffusion
equations for the temperature and salinity dis-
tributions are

6T+V6T_K orT @
o tVaz= Ko )
+ upward flow (1)

~ downward flow (2)

oS oS a*s

EiVﬁ=Ks6_Zz (5)

where K; and K are the thermal and saline diffu-
sivities. The boundary conditions are
T="Tp,
T=Ty,

S=358p,, at
S=S8,, at Z=L.

Z=0 (6a)
(6b)

The following transformations are used to define the

dimensionless variables :
z=Z|L, v=LV/K;,

0= (T-Ty)/(Tr—Ty),

t=Kyt/L? 7

¢ = (S—Su)/(Sp—Su)-

The governing equations (3)-(5) and boundary con-
ditions (6) are transformed to dimensionless form

! o Rf'(o 6,)d Rfl(qb $2)dz—v (8)
— == - z— - z—v
Pat T0 1 2 S() 1 2
o @0 :
ot ~Voz  oz? ©)

+ upward flow (1)
— downward flow (2)

o o 13
Ry (10)
=1, ¢=1 at z=0 (11a)
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0=0, ¢=0 at z=1. (11b)

This system of governing equations and boundary
conditions includes the four dimensionless parameters

9Br(Tp — Ty)La?

= lei b
R, 16vK, thermal Rayleigh number
Sp —Sy)La?
Ry = 9Ps(So —Su)La” saline Rayleigh number (12)
16vK,
LY K
P= (Z) TT modified Prandt! number
g = K;/Ks inverse Lewis number.

The thermal Rayleigh number is destabilizing
(tends to create a loop flow) while the saline one is
stabilizing.

3. STEADY-STATE SOLUTIONS

The steady-state solution, derived by Zvirin [9], is
briefly reviewed here because it is needed for the stab-
ility analysis in the next section. Also, the resulis of
ref. [9] are extended here: additional information is
presented, including discussions of new features of the
solution.

At steady state all the time derivatives in equations
(8)-(10) vanish. As can be seen, the solution depends,
then, only on the Rayleigh and Lewis numbers and
not on the Prandtl number. The solution procedure is
similar to other analytical solutions of free convection
loops, cf. refs. [1,2,9, 10]: at the first stage, the energy
and diffusion equations (9) and (10) are solved, with
boundary conditions (11), for the temperature and
salinity distributions in terms of the constant velocity,
v, which is yet an unknown parameter

vz v

0 =M@0) =" =, 6=Mz-0)  (13)

40z __ adv

$1 = NGia) = > 6= NG —q). (13b)

These distributions are introduced now into the
momentum equation (8), and the integrations are per-
formed. The result is the following algebraic equation
forv:

e"+1 2 e+ 1 2
RT(e—x ‘5>‘RS(eT—1‘;z)-"-

In general, this equation must be solved numerically
to obtain v(Ry, R, g). The solution procedure is quite
simple, however, because equation (14) can be re-
arranged such as to find R-(v;Rs,q) by a straight-
forward computation. The equation has a trivial,
‘conductive’ solution, v = 0, discussed below. Figures
2 and 3 show the results for the steady velocity of the
‘convective’ solution, v, as a function of the thermal
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F1G. 2. The dimensionless steady-state velocity, v (‘convective solution’), as a function of the thermal
Rayleigh number, Ry, for various values of the saline Rayleigh number, R,. The inverse Lewis number is

g=2.
ng Rg2Q! 5 10 20 50
Q=100
v stable
— — — unstable
2201
2|0
o

FiG. 3. The dimensionless steady-state velocity, v (‘convective solution’), as a function of the thermal
Rayleigh number, Ry, for various values of the saline Rayleigh number, Rs. The inverse Lewis number is
g = 100.

Rayleigh number, R;, with the saline Rayleigh
number, Ry, as a parameter, and for two values of the
inverse Lewis number, ¢ = 2, 100. The most inter-
esting feature of the steady-state flow is the existence
of double solutions for ¢ > 1 and Rg > 0. It is noted
that muitiple steady-state solutions have been pre-
viously discovered in thermosyphons [20-23] and also
in double-diffusive loops [6-9]. The occurrence of
multiple steady flows is caused by the non-monotonic
dependence of the buoyancy forces (the integral terms
in the momentum equation (8)) on the velocity, as
explained by ref. [21].

The lines R, in Figs. 2 and 3 are the loci of the
minimal values of R, on the curves for ». They can be
obtained formally from equation (14) in the following
way. The equation is rearranged, as mentioned above,

to read R,y = R;(v;Rs,q). Ry is found from the
condition dR;/dv = 0, which leads to

1 e+1 2 —2ge” 2
(e | (=)
e+1 2 —2¢" 2
B [”*RS <eq”—1 ‘E)][(e"—l)z *F]} =0

(15)

where

This equation can be solved, in principle, for
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v, = v(Rs,q), and the result introduced back into
equation (14) to obtain R, (R.,q).

For every value of ¢ and Ry, there does not exist a
steady loop flow when R, < Ry.. These critical lines
for the existence of steady states are shown in the
stability charts on Figs. 4-6 as Rr. (Ry) for various
values of g.

Reference [9] includes analytical approximations
derived asymptotically from equation (14) for small
and large values of the velocity v. The former also
yields the limiting condition for v = 0: R, = 6+¢R;.
The results of ref. [10] for a thermosyphon with a
single gradient of temperature are obtained from the
present solution by introducing Rg = 0. No double
solutions such as illustrated in Figs. 2 and 3 appear in
this case.

Let us examine now the rest state of no flow in the
loop. As discussed in ref. [9], the ‘trivial solution’,
v = 0, is related to the symmetry of the system: in a
non-symmetric loop a flow would always be estab-
lished upon activation of the driving mechanism (the
heat source). In the loop treated here (Fig. 1), there is
no preferred direction thus for any positive solution,
v, the mirror image flow, —v, is also a solution.
This is a further multiplicity of the steady-state solu-
tion.

The temperature and salinity distributions are
obtained from expressions (13) by inserting the
steady-state velocity, v (the solution of equation
(14)). For the rest case, we can introduce v = 0 into
equations (9)-(11), and solve them to get

0ia=¢a=1-z0=0 (16)
These profiles are also obtained by expanding equa-
tions (13) for v > 0. The momentum equation (8) is
identically satisfied by the solution (16) for the rest
state. This solution for the no-flow situation is also
referred to as the ‘conductive solution’, cf. {6].

The conductive solution would naturally be estab-
lished when the system parameters are such that the
rest state is stable. In an experimental system it is
possible to obtain the no-flow solutions for unstable
states by blocking the flow, using a conductive mem-
brane. This was done [24] in a test with a completely
stagnant channel of a multiple-loop system.

We summarize now the results for the steady-state
solutions for the double-diffusive thermosyphon (see
also Figs. 2-6):

(a) A trivial ‘conductive’ solution, v = 0, always
exists: for all values of Ry, Rgand q.

(b) No flow solution for all ¢ and R; when
R, < Ry.. Ry is determined from equation (15).

(c) Double steady flow solutions for all ¢ > 1, when
Rs > 0, in the range R, < R; < 6+¢gR; (the region
between these two lines in Figs. 4-6).

(d) A single steady flow solution for all g and Ry
when R; > 6+¢R;.

It is noted, again, that all flow solutions are pairs of
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F1G. 4. The stability chart in the Rayleigh numbers plane,
Rs—R,, for the inverse Lewis number, g = 2.

v and —v. For example, case (c) above includes five
different solutions: the two pairs and the rest state
v=0. The term °‘exists’ means, here, a solution
obtained from the governing steady-state equations
(8)-(11). Actual ‘existence’ depends on the stability
of the solutions, analyzed and discussed in the next
section.

4. STABILITY ANALYSIS

4.1. The characteristic equations

The method of linear stability analysis is employed
for the investigation of the various steady-state solu-
tions derived in the previous section. We start with
the formulation for the steady flow solutions, and
write the time-dependent velocity, temperature and
salinity as

0=0+y()e”, ¢ =d+w(z)e”

a7

where 7, f and ¢ now denote the steady-state values:
7 is the solution of equation (14) (results appear in
Figs. 2 and 3) and § and ¢ are obtained by introducing
U into equations (13). The perturbations u, ¥ and w
are considered small. For the stability study of the
onset of motion from rest, # = 0 and § and ¢ are
given in equation (16). The stability parameter, o, in
equation (17) may generally be complex, and the state
is unstable when Re (¢) > 0, while Re (¢) = 0 yields
the marginal stability.

Expressions (17) are introduced into the time-
dependent governing equations and boundary con-
ditions (8)—(11). The steady-state terms cancel ident-
ically and second-order products such as w) and uw
are neglected. Thus the momentum, energy and
diffusion perturbation equations are obtained

v=>04ue”,
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FiG. 5. The stability chart in the Rayleigh numbers plane, R¢-Ry, for the inverse Lewis number, ¢ = 10.
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F1G. 6. The stability chart in the Rayleigh numbers plane, RyRy, for the inverse Lewis number, g = 100.

u(%+l>= Rf (W —¥,)dz

—RSJ (w—wy)dz (18)

&y _dy dd
& TG T =g

+ upward steady flow (1)
— downward steady flow (2)

1d%0w _ _dw - d¢é
q dz? trg T T Tuyg;

with the boundary conditions

V==, =w,=0 at z=0,1.

a9

(20)

@n

The solution procedure is similar to that of the
steady-state problem ; equations (19)}-(21) are solved,
first, for the temperature and salinity perturbations i/
and @ in terms of the velocity perturbation, », which
is an unknown constant. The derivatives dJ/dz and
d¢/dz are obtained by differentiation of equations
(13). The following solutions resemble those of ref.
[16] for a thermosyphon with a temperature gradient
only, and for brevity we write v for the steady-state
velocity (instead of §)

u v 1
T e e B — v __a? 712
'//‘ cl—e¢' {el’l_eh [(C € 2)6

+ (e —e”) e’ — e’”} (22a)
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u v
Tol-e

i
lllz ’ {8'72—6‘71 [(e_u-e—h)e—hz

+(e'?2—e“’)e“”1’]—e“”"} (22b)

Y12 =3t/ (@7 +40)] (22¢)

_u g 1 PR
o =2 1 e e

+ (e’ —e?) e"zz]—e‘f*”} (23a)

u qv
W, =~
2T g l—e”

[t ey e
+(e“‘52—e“"")e”“1’]—e“‘?”} (23b)

b2 = St J/0 +olgl (@239

These temperature and salinity distributions are
now introduced into the perturbation momentum
equation (18). The constant u cancels out, and after
the integrations are performed we get the charac-
teristic equation for the stability parameter o

o

Y(o) =73

+1—-2RF—RG)=0  (24)

where

F= % {L 1 [}_(ev,_ewz)(cu ~1)

I—e® eh—e™ |y,
i
+ y—(e”* —e’) (e’ — 1)] + 1} (25a)
2

G=1
o

W

qu 1 1
{rréq‘ﬂ S [aT e - -1)

+ glw(e”' —e?)(e zwl)] + 1}. (25b)

For the investigation of the stability associated with
the onset of motion from rest, we introduce into equa-
tions (19) and (20) # = 0 and the derivatives of df/dz,
d¢/dz from equation {16). The solutions for the tem-
perature and salinity perturbations are presented in a
simpler form compared to {10, 16}

u 1
wl=_¢2z;{1'—el+l
7=0

fe* e "z’]} (262)

1
wy =~—wz=3{l

- —m[e’“+e““‘”)}} (26b)

A= Jo, p=./(qo0) (26¢)

Introducing these expressions into equation (18)
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and carrying out the integration we obtain the charac-
teristic equation

2 2(e* 1

2~
——Rs[l - E“H)J} =0. @7)

It is noted that this equation can also be derived
from equations (24) and (25) by a careful expansion
for & — 0. Furthermore, for this case the perturbation
distributions (22) and (23) reduce to those given by
equation (26).

The characteristic equations for the stability par-
ameter, o, are equation (27) for the onset of motion
from rest and equation (24) for the stability of the
steady flow solutions. The nature of the stability is
determined by the behaviour of . In the following
both equations are solved by various methods to
derive the stability chart of the double-diffusive
thermosyphon.

4.2. Stability associated with the onset of motion from
rest

There are two main types of perturbation growth
associated with thermal or double-diffusive insta-
bilities :

(a) Monotonic instability, where ¢ is real and the
critical disturbance grows exponentially with time.
This behaviour corresponds to the ‘principle of
exchange of stability’ and on the marginal stability
lines o = 0.

(b) Oscillatory instability, where ¢ is complex,
the critical perturbation growth is oscillatory and
marginal stability is exhibited by steady oscillations,
o = iw and the amplitude neither increases nor decays.

In the following we investigate the characteristic
equation (27) to find marginal stability lines,
Re (o) =0, in the form of R; = R, (Rs; q; P) and
stability regions in the Rayleigh numbers plane
R R;.

In previous stability analyses of the onset of motion
in thermosyphons with a temperature gradient only
[10, 16, 17} it was discovered that the instability associ-
ated with initiation of motion from rest is monotonic.
We therefore start by trying the marginal solution
¢ =0 for equation (27). Expanding this equation
(with relations (26¢)) for small real values of ¢ and
approaching the limit ¢ — 0, we obtain

RT = 6+qu

monotonic marginal stability line (MMSL). (28)

Condition (28) holds for all values of g and R;.

In ref. {10] it was found that the critical Rayleigh
number for the onset of motion in a thermosyphon
with no mass diffusion is Ry = 6. This result is obvi-
ously a special case of the more general condition (28),
with Rg = 0. However, for the simple thermosyphons
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treated in refs. {10, 16, 17] the critical Rayleigh num-
bers for marginal stability of the ‘conductive solu-
tions’ coincide with the minimal R, values for the
existence of steady flow solutions, which also cor-
respond to the limiting velocity & = 0. In our case, a
completely different behaviour is observed from the
results of Section 3, see Figs. 2 and 3: for g> 1,
R > 0 there exist steady flow solutions for thermal
Rayleigh numbers, R, below the values given by equa-
tion (28) for which ¢ = 0. The critical R, for a steady
flow is given by Ry (Rs; ¢), as in Figs. 2 and 3. These
two lines, which are independent of the modified
Prandt! number, P, are included in the complete stab-
ility charts for various values of ¢ and P, Figs. 4-6.
We now return to the characteristic equation (27)
and investigate it, looking for possible oscillatory
instabilities of the rest state. In particular, it is inter-
esting to find whether the critical line Ry, is a marginal
stability line. This investigation has been performed
in two stages. The first consisted of using the Nyquist
criterion in order to get a preliminary indication for
the existence of oscillatory unstable disturbances.
According to this method, cf. ref. [25], the complex
function Y,(iw) is plotted for —oo < w < o, If the
curve for a given combination of Ry, Ry, ¢ and P
encircles the origin in the complex Y-plane, the state
specified by these parameters is unstable.t The results
of numerical calculations performed by this procedure
showed that there are, indeed, oscillatory unstable rest
states for various values of the system parameters.
Moreover, such instabilities appear both below and
above the line Ry in Figs. 4-6, which indicates that
this line does not represent marginal stability of the
rest state. In the second stage a method suggested by
ref. [18] has been employed: equation (27) is
rearranged in the form Ry = R, (iw; Ry, q, P), where
R, is a complex function of w. At a point of marginal
stability for some Rg, g and P, Im [R,(w)] = 0 because
the parameter R, is real. Thus by solving this equation
we obtain the frequency, w, of the critical disturbance.
This value of w is finally used to calculate
R, = Re R (w)], giving a point on the marginal stab-
ility line for the specified parameters R, ¢ and P.
The results are shown in the stability charts pre-
sented in Figs. 4-6 for three different values of the
inverse Lewis number, ¢. Each chart in the plane
of the saline and thermal Rayleigh numbers Rg, Ry
includes three (solid) oscillatory marginal stability
lines (OMSL) for three values of the modified Prandtl
number, P. As can be seen, these are nearly straight
lines; however, the numerical solution reveals that
they curve, especially in the vicinity of the points
where they branch off the monotonic marginal stab-
ility line (MMSL) given by equation (28). The bifur-
cation points are obtained from equation (27): the

11t is noted that Y, defined in equation (27), does not
have any pole in the half plane Re(s) > 0 (including the
point o = 0, which has already been treated above).
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Table 1. Bifurcation points of the monotonic and oscillatory
stability lines: values of the saline and thermal Rayleigh
numbers, R¥and R%, for various values of the inverse Lewis
number, g, and the modified Prandt] number, P (see also

Figs. 4-6).
P
q 0.1 1 10
2 R¥ 303 33 6
R¥ 612 72 8
10 R¥ 6.733 0.733 0.133
R¥ 73.33 13.33 7.333
100 R 0.0612 0.00667 0.001212
R¥ 12.12 6.667 6.1212

complex function Y,(iw) is expanded for small values
of w and its limit for w — 0 is sought. Two coupled
equations are thus obtained, Re{Y,y) = Im(Y,) = 0.
One of them (the latter) obviously reduces to relation
{28) (the point lies on this MMSL). The former equa-
tion, together with this relation, leads to the following
expressions for the bifurcation points of the mono-
tonic and oscillatory marginal stability lines:
6(1+10/P)

aqg—1
Table 1 includes the coordinates of these points for
all the values of g and P in Figs. 4-6.

It is noted that the most interesting stability
phenomena occur in the first quadrant (positive R
and Ry) of the charts in Figs. 4-6. As shown in the
figures, the MMSL exiends into the third quadrant.
Any state {point) above it, including the whole second
quadrant, is unstable. The entire fourth quadrant lies
in the stability zone.

The stability charts presented in Figs. 4-6 depict
several interesting phenomena. The most ‘peculiar’
behaviour is that the oscillatory marginal stability
lines intersect the critical line, Ry, for existence of a
steady flow solution. There is no such solution below
the line Ry, while the stable region (for small dis-
turbances) for any value of P lies below the cor-
responding OMSL. Thus for any point (state) located
in a region such as 1 in Fig. 5 (for ¢ = 10, P =0.1),
there are steady flow solutions inside the domain of
linear stability. This is referred to as a region of sub-
critical instability, and was discovered also by the
analysis of ref. [6] (neglecting thermal and mass diffu-
sivities). The implication of the existence of this
phenomenon is that while the linear stability predicts
a decay of any disturbance, there are some per-
turbations that do grow, and only a more exact non-
linear model would be capable of tracing them.

Let us examine now the states represented by points
inaregion such as I1in Fig. 5 (forg = 10and P = 0.1,
again). Although they are linearly unstable, no steady
flow solutions are established for the parameters
defining them. This indicates that a small disturbance
would initially grow, but then non-linear effects inter-

€ R% = 6+¢R%. 2%
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fere, leading to either a decay to the rest state or to a
transient behaviour, possibly of a ‘chaotic’ type. As
mentioned above, the latter has been predicted for
thermosyphons [11-13}, and for a loop with the Soret
effect [8]. It is noted that a region of this type is not
found by the simplified model of ref. [6]. Furthermore,
a non-linear analysis was used in ref. [6] to show
that in the linearly stable region where steady flow
solutions do not exist (equivalent to the domain below
both R and OMSL in our case), all the solutions
decay, i.e. it is a region of global stability. This non-
linear analysis was not carried on in ref. [6] to inves-
tigate the region of type I in Fig. 5. Such an analysis
is beyond the scope of the present study and is left for
future work.

A complete description of the stability charts in
Figs. 4-6 is given in Section 5.

4.3. Stability of the steady flow solutions

The stable nature of the steady flow solutions is
determined by the characteristic equation (24). We
check, first, whether there are any monotonic insta-
bilities of the steady-state flows. For this, expressions
F and G in equation (25) are expanded for small real
values of ¢, and the limit ¢ — 0 is approached, to yield

R 1 ve'

F EF|H=0= E_m
o _ _ 1 que?
G°=Glomo = [qv — = 1)2]. (30b)

The velocity, v, in these relations is the solution of
equation (14). We therefore introduce R(v; R, q)
from equation (14), F° and G° from equation (30) and
o = 0 into equation (24). The resulting relationship
between Rg, ¢ and v obtained in this way is exactly
equation (15), which together with equation (14)
define the critical line Ry. This is the critical line for
the thermal Rayleigh number below which there does
not exist any steady flow solution and it also separates
the double steady solutions, see Figs. 2 and 3. Thus the
critical line Ry, in addition, is a monotonic marginal
stability line for the steady flow solutions.

The Nyquist criterion (Section 4.2) has been used
to find the stability regimes of the steady flows, in the
stability charts of the Rayleigh numbers plane, Figs.
4-6. The results of the numerical computations show
that in the range of double solutions (between the
lines MMSL and Ry, in Figs. 4-6), all the steady flows
with the lower velocity—below the lines R, in Figs.
2 and 3, are unstable,} while all the flows with the
higher velocity (above the lines Ry) are stable. In the
range where a single steady solution exists, i.e. above
the lines MMSL in Figs. 4-6, the solution is stable.
Furthermore, the results obtained by the numerical
calculations based on the Nyquist method show that
there does not exist any oscillatory instability in the

(30a)

t1In ref. {7] it is merely hinted that such a solution is
‘expected to be unstable’.
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whole domain of the system parameters Rr, Rs, ¢
and P. This result may seem rather surprising at first
glance, because it is well known that steady flow solu-
tions of thermosyphons are unstable in some range of
system parameters. However, as shown in ref. [16] for
a loop with a temperature gradient only, the solution
for small thermal conduction (high values of Ry) cor-
responds to the low-velocity stable region found by
Welander {26] for the vertical thermosyphon. A finite
conductivity or thermal and mass diffusivities are sta-
bilizing factors, thus the steady solutions of the loop
under consideration are stable as indicated above.

It is noted that the result obtained here, that the
flow with lower velocity in the case of multiple steady
flow solutions is unstable, is not general. In other
thermosyphons where multiple solutions have been
observed [20-23], there is no general rule for stability.
All the solutions or some of them can be stable or
unstable and the instabilities are always of the oscil-
latory type, as in loops with a temperature gradient
only, cf. ref. [10]. Here the marginal stability line is
for monotonic growth of the disturbances.

In the system treated here, the side walls were
assumed to be insulated. The effects of transverse heat
and mass fluxes have been investigated for the toroidal
loop in refs. [6, 7, 11-13] (without axial conduction
and diffusion), in ref. [8] without axial conduction but
with axial diffusion, including the Soret effect, and
finally in ref. [17] with thermal conduction. As pointed
out in ref. [17], the Rayleigh numbers defined in these
previous studies are based on transverse heat and
mass convection coefficients. When axial diffusions
are considered the effects of these coefficients are
expressed by Biot numbers, Bi. It is shown, indeed, in
ref. [17] that the results of ref. [12], for example, are
the asymptotic expansions for large Rayleigh and Biot
numbers. In the range of small R and Bi an interesting
phenomenon has been obtained in ref. {17}, namely a
minimum for the function of the critical Rayleigh
number, R (Bi), for the onset of motion. From this
we can also learn about the possible effects of trans-
verse heat fluxes in the system considered here. If
the heat convection coefficient is small and increasing
from zero, the critical Rayleigh number of the rest
state would decrease, because of the increase of the
driving force caused by heating or cooling from the
side. When this coefficient becomes large, the tem-
perature variations around the loop tend to smooth
out, causing a decrease of the driving force and an
increase of the critical Rayleigh number. Thus a mini-
mum for the curve of the latter as a function of the
Biot number is expected here too.

5. SUMMARY

Several types of instabilities have been discovered
by the theoretical analysis of the double-diffusive ther-
mosyphon shown in Fig. 1: those associated with the
onset of motion and others involving multiple steady
flow solutions (see Figs. 2 and 3) and their stability.
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The method to derive the complete linear stability
chart, including all these phenomena, is described in
Sections 3 and 4. Here we summarize the results shown
in Figs. 4-6, which include the charts in the Rayleigh
numbers plane Ro—R; for three values of the inverse
Lewis number, ¢ and for various modified Prandtl
numbers, P.

(a) Instabilities of the ‘conductive solution’, i.e.
associated with the onset of motion from rest.

The line Ry = 6+¢gRs is a monotonic marginal
stability line (MMSL); every point (representing a
state with the respective values of the parameters)
above it is unstable, with a monotonically growing
disturbance. The line is the true stability boundary for
R; € R¥q, P), see Figs. 4 and 5 for example. In the
range Rg> R% the true stability boundary for every
value of P is represented by the corresponding OMSL
(see Fig. 4). In this range MMSL is still a critical line
for monotonic perturbations, but the most dangerous
disturbance is an oscillatory one and the stability
margin is on OMSL, which lies below MMSL. The
‘conductive solution’ is linearly unstable for any state
above the former.

The OMSL curves intersect the line Ry, marking
the condition for existence of steady flow solutions.
In the region of subcritical instability, e.g. I in Fig. 5,
steady flows are established although the rest state is
linearly stable. In the unstable region above OMSL
and below Ry, e.g. Il in Fig. 5, no ‘convective solu-
tions” exist. Both phenomena are due to non-linear
effects, not considered here.

(b) Instabilities of the ‘convective solutions’.

There are no steady flow solutions in the region
below the line Ry, in the stability chart, see Figs. 4-6.
It is noted that for Rg < 0 Ry, coincides with the line
R; = 6+gR;. Two steady flow solutions exist in the
region between these two lines, see also Figs. 2 and 3.
The solution with the lower velocity is always mono-
tonically unstable, (to small perturbations) thus the
curve Ry is also a marginal stability line. All the
steady ‘convective solutions’ represented by points
above R, are stable, including the higher velocity
one in the region of double solutions, and the single
solution above the line R, = 6+¢R;.

It is noted that the trivial ‘conductive solution’
always exists, together with the ‘convective solution’
(or solutions), and its stability was discussed above.
In addition, all the steady flow solutions are actually
pairs of solutions, because there is no preferred flow
direction in the loop.
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INSTABILITES DANS UN THERMOSIPHON DOUBLEMENT DIFFUSIF

Résumé—On étudie le comportement stationnaire et la stabilité d’une boucle de circulation naturelle
doublement diffusive. Dans le thermosiphon constitué par deux canaux verticaux, le fluide est soumis a
des gradients de température et de salinité. Les équations de continuité, de quantité de mouvement,
d’énergie et de diffusion de masse sont écrites pour un modéle unidirectionnel et un écoulement laminaire.
Les solutions permanentes incluent le cas trivial “‘conductif” sans vitesse dans la boucle (v = 0) et les
solutions de convection lorsque le nombre de Rayleigh thermique R dépasse une valeur critique Ry, qui
dépend du nombre de Rayleigh de salinité Rg et du nombre inverse de Lewis g. Dans un certain domaine
des paramétres du systéme, les “solutions de convection double” sont obtenues. Les résultats de ’analyse
de stabilité linéaire montrent que ceux pour v plus faible sont toujours instables et que les autres sont
stables. Le graphe de stabilité, dans le plan Rg— Ry, obtenu par cette analyse, concerne aussi une description
des instabilités associées avec la mise en mouvement depuis le repos. Les frontiéres de stabilité marginale
monotone (MMSL) R, = 6+¢Rj, celles oscillatoires (OMSL) qui dépendent aussi du nombre de Prandtl
et bifurquent a partir de MMSL. Un phénoméne intéressant, montré par la solution, est que OMSL coupe
la courbe Ry, représentant les conditions critiques pour I'existence de solutions permanentes.

INSTABILITATEN IN EINEM DURCH TEMPERATUR- UND
KONZENTRATIONSUNTERSCHIEDE BETRIEBENEN THERMOSYPHON

Zusammenfassung—Der stationdre Zustand und das Stabilititsverhalten eines Naturumlaufs wurden theore-
tisch untersucht. Das Fluid in dem aus zwei vertikalen Kanilen bestehenden Thermosyphon unterliegt
sowohl einem Temperatur- als auch einem Salzgehaltsgradienten. Die Erhaltungsgleichungen fiir Masse,
Impuls, Energie und Stofftransport wurden auf der Grundlage eines eindimensionalen Modells fiir laminare
Stromung aufgestellt. Die Losungen fiir den stationdren Fall beinhalten den trivialen Fall der Wéarmeleitung
bei der Stromungsgeschwindigkeit v = 0 und Ergebnisse fiir konvektive Stromung, wenn ndmlich die
thermische Rayleigh-Zahl R; einen kritischen Wert Ry, iberschreitet, der von der Salzgehalts-Rayleigh-
Zahl R; und der inversen Lewis-Zahl ¢ abhingt. In einem bestimmten Bereich der Systemparameter erhalt
man fiir den konvektiven Fall zweifache Losungen. Die Ergebnisse der linearen Stabilitdtsanalyse zeigen,
daB die Lésung mit der niedrigeren Geschwindigkeit immer instabil und alle anderen LOsungen fiir
stationdre Strémung stabil sind. Das von dieser Untersuchung abgeleitete Stabilitdtsschaubild in der Rg—
R;-Ebene enthdlt auBerdem eine Beschreibung der mit dem Einsetzen der Bewegung aus dem Ruhezustand
verbundenen Instabilitit. Die Stabilititsgrenzen beinhalten die momentanen Stabilitdtslinien (MMSL)
Rr=6+gRs und die Stabilititslinien fiir Oszillation (OMSL), die auBerdem von der Prandtl-Zahl
abhingen und von der MMSL aufgespalten werden. Ein durch die Losung dargelegtes interessantes
Phinomen ist, da} OMSL die Linie Ry, schneidet, welche letztere die kritischen Bedingungen fiir die Existenz
der Losungen einer stationdren Stromung darstellt.

HEYCTOMYHMBOCTHU B TEPMOCU®OHE C JBOMHON JUGDY3IUEMN

Annoraius—TeopeTH4eCKH H3Y4aloTCA CTAalHOHApHble pElCHHd M MX YCTOWYHBOCTh B 3ajayax Ui
KOHTYpa ¢ ABoitHO# muddysueil. Ha xumkocts B TepMocHGoHe, COCTOALIEM M3 IBYX BEPTHKAJIBHBIX
KaHAJIOB, BO3JEHCTBYET KaK TeMNEPAaTYPHbIH IpaJWeHT, Tak H IpaJHMeHT coJjieHocTH. Onpeaensiomue
ypaBHEHHS HEpa3pBIBHOCTH, ABHXEHHA, SHEPrUH ¥ AH(dy3UH 3aNHCAaHEI HA OCHOBE OTHOMEPHOH Monenu
1A NaMHHApHOTO TedeHHs. CTallHOHApHBIE PEIICHHA BKIIIOYAIOT KAK TPHBHAJNBHOC (KOHIYKTHBHOE»
pellleHrAe— IS CIIy4ast OTCYTCTBHs MIOTOKA B KOHTYpe, v = 0, Tak ¥ [UIA «KKOHBEKTHBHOTO» TEYEHHS, KOFAa
TerioBoe 4ucio Pages R; npeBbINIaeT €ro KpHTHYECKOe 3HadeHue R, 3aBHcsmee oT uncna Panes
CoJIeHOCTH Rg 1 o6paTHoro uucna Jipronca ¢. B HekoTOpoM Hana3oHe NapaMeTPoOB CHCTEMBI NOJTy4EHBI
JBOI{HBIE «KKOHBEKTHBHEIC» PEIlICHAA. PeaynbTaThl aHa/IN3a 110 JIMHEHHON TEOPHH YCTOMYMBOCTH MOKA3bi-
BAalOT, YTO TEHEHHSA C MCEHBIUHM v BCETAAa HEYCTOWYHBBI, 2 BCE OCTAJIbHbIC CTAUMOHAPHLIE DEIECHHA
ABJIFOTCH ycToHunBeIMU. KpuBasi ycTOHYHBOCTH B INOCKOCTH Rg — Ry, MOJIy4eHHas C TIOMOLIBIO 3TOT0
aHaJIN3a, KpOMeE TOTO BKJIIOYAET ONMHCAHHE HEYCTOHYMBOCTEMH, CBA3AHHBIX C BOSHHKHOBCHHEM [BHXCHHSA
H3 COCTOSHHSA NMOKOS. ['paHMIlbI MapruHaJbHOH YCTOWYHBOCTH BKJIIOYAIOT JIMHAM MOHOTOHHOM Mapru-
HajbHO# ycroityuBocTH (JIMMY) R, =6 + qRg H OCHMUISUMOHHOH MapruHajibHOH ycToHYMBOCTH
(JIOMY), xoTopsle 3aBucaT oT yucna Ilpanarng u orerBasiorcs ot JIMMY. UnrepecHbie addexTs,
BBITEKAIOIIME M3 PEIICHHSA, COCTOAT B ToM, 4yTo JIOMY mnepecekaeT JHHHIO Ry, npeacrapiss coboit
KPHTHYECKHE YCJIOBHS CYIIECTBOBAHHUA LIS CTALHOHAPHBIX TEYEHUH.



