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Abstract-The steady state and the stability behaviour of a double-diffusive natural circulation loop are 
investigated theoretically. The fluid in the thermosyphon consisting of two vertical channels is subjected 
to both temperature and salinity gradients. The governing equations of continuity, momentum, energy 
and mass diffusion are written based on a one-dimensional model for laminar flow. The steady-state 
solutions include the trivial ‘conductive’ one of no flow in the loop, v = 0, and ‘convective’ flow solutions 
when the thermal Rayleigh number, R,, exceeds a critical value, R,, which depends on the saline Rayleigh 
number, RS. and the inverse Lewis number, 4. In a certain range of system parameters double ‘convective 
solutions’ are obtained. The results of linear stability analysis show that the one with lower v is always 
unstable and all the other steady flow solutions are stable. The stability chart in the plane RsRr, derived 
by this analysis, also includes a description of instabilities associated with the onset of motion from rest. 
The marginal stability boundaries include the monotonic marginal stability lines (MMSL) RT = 6+qRS, 
and oscillatory ones (OMSL) which depend also on the Prandtl number and bifurcate from the MMSL. 
An interesting phenomenon, exhibited from the solution, is that the OMSL intersects the line R,, 

representing the critical conditions for existence of steady flow solutions. 

1. INTRODUCTION 

THE FIELDS of natural circulation loops (ther- 
mosyphons) and double-diffusive processes have 
gained increased interest in the last two decades. 
Flows with both phenomena appear in energy con- 
version systems and in geophysical processes, and 
exhibit various kinds of instabilities, e.g. refs. [l-5]. 
Although several thermosyphons involve diffusion of 
both heat and mass (i.e. in solar energy systems and 
in nuclear reactor cooling loops), not much work has 
been done, to date, on double-diffusive processes in 
natural convection loops. The only available studies 
are those of Siegmann and Rubenfeld [6,7], Hart [8] 
and Zvirin 191. 

Three distinct types of instabilities have been found 
(experimentally and theoretically) in thermosyphons, 
except for the local formation of ‘classical’ Rayleigh- 
Benard closed cells : 

(a) the onset of flow around the loop ; 
(b) instability of a steady loop flow ; 
(c) multiple steady-state solutions, i.e. meta-stable 

equilibrium states. 

All three types, associated with global flow around 
the loops, have been discussed in ref. [lo], including 
the controversy in the literature about critical con- 
ditions for the onset of motion. It is noted that natural 
circulation loops exhibit, in addition, the ‘peculiar’ 
chaotic behaviour of transient flows [8,1 l-131. 

Siegmann and Rubenfeld [6] obtained a critical con- 
dition for the onset of motion in a toroidal loop with 
temperature and concentration gradients. In their 
analysis, however, they neglected the thermal and 
saline diffusivities and defined Rayleigh numbers 

based on heat and mass convection coefficients 
between the fluid in the loop and the surroundings. 
Hart [8] studied the same system with the inclusion 
of diffusion and thermal diffusion (Soret effect) but 
neglecting, again, thermal conduction. He also found 
chaotic transient behaviour which was previously dis- 
covered in loops with temperature gradients only [ 1 l- 
131. Critical conditions were derived in refs. [12-141 
for initiation of flows in thermosyphons with a single 
gradient of temperature, using a similar approach. 

The thermal and saline diffusivities must be 
accounted for in problems of flow initiation from a 
rest state, where the convection slowly develops from 
zero. Moreover, the first two effects are the sole mech- 
anisms for heat and mass transfer in an insulated 
channel just prior to the onset of motion [15]. Zvirin 
has derived correct critical conditions for the stability 
margins of vertical single-channel and multi-channel 
thermosyphons [lo, 161 and a toroidal loop [17], tak- 
ing into consideration these diffusivities. The results 
of the latter indicate, indeed, that the previous analy- 
ses [6-8, 12-141 may be regarded as approximations 
for large values of the Rayleigh and Biot numbers. 
Zvirin [9] investigated a double-diffusive vertical ther- 
mosyphon, and found multiple steady-state solutions. 
His study did not include stability analyses of the rest 
state and the steady flows. 

The present work is a theoretical investigation of 
the stability of a vertical loop with double-diffusive 
processes. The characteristic stability equations are 
derived from the continuity, momentum, energy and 
salinity conservation equations, by the linear stability 
analysis. Critical conditions are obtained for the onset 
of motion from the rest state, and the stability margins 
of the multiple steady solutions is determined. 
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NOMENCLATURE 

a radius of pipe Greek symbols 
B function of the steady velocity, equation 

iz 
saline expansion coefficient 

(15) thermal expansion coefficient 

r” 

function of v and Q, equation (25a) y,,* parameters, equation (22~) 
friction coefficient 6 ,,2 parameters, equation (23~) 

G function of v, q and CT, equation (25b) e dimensionless temperature, equation (7) 

9 acceleration of gravity 1 parameter, equation (26~) 

K, solute diffusivity p parameter, equation (26~) 

KT thermal diffusivity V kinematic viscosity 

L height of the loop P density 

M steady-state temperature distribution, 0 stability parameter 

equation (13a) z time 

N steady-state salinity distribution, equation 4 dimensionless salinity, equation (7) 

(13b) $ temperature perturbation 

P modified Prandtl number, equation (12) w salinity perturbation. 

4 inverse Lewis number, equation (12) 

& modified saline Rayleigh number, Subscripts 

equation (12) C critical (Rayleigh number) 

RT modified thermal Rayleigh number, D lower container 

equation (12) S related to salinity 

S salinity T related to temperature 

T temperature U upper container 

t dimensionless time, equation (7) 1,2 channels with upward and downward 

u velocity perturbation flows (except for the parameters Y,,~, 

V velocity 6 1.2). 
V dimensionless velocity, equation (7) 

W oscillation frequency, Im (6) Superscripts 

Y complex function, equations (24) and (27) * bifurcation of monotonic and oscillatory 

Z vertical coordinate marginal stability lines 

Z dimensionless vertical coordinate, (‘, steady state. 

equation (7). 

2. THE THEORETICAL MODEL 

AND GOVERNING EQUATIONS 

Figure 1 describes schematically the loop analyzed 
here: two insulated? channels connecting two large 
containers, with constant temperatures and salinities 
T,, S, and T,, S,. The density of the fluid in the 
loop depends on both temperature and salinity 

Tut% 

J-n--J 

I2 t’ 12 
V V u- 20 

P = PUP -MT- Td+BdS--Sdl (1) I 
where /IT and Bs are the thermal and saline expansion 
coefficients. The Boussinesq approximation is used, 
i.e. the density and all the other fluid properties are 
taken as constants in the governing equations except 

Toa SD 

for the body force term in the momentum equation. FIG. 1. A scheme of the vertical thertnosyphon with double- 
It is assumed that the effects of surface tension and diffusive processes. 

local nressure drops at the connections between the 
channels and the containers can be neglected, i.e. the 
pipes are wide and long enough. The length of the 

boundary conditions. This requirement might be hard 

channel also enables the assumption of constant 
to realize in an experimental system for the inves- 
tigation of stability and oscillations of the steady flow 
unless the pipes are long and the connections are care- 

t The effects of heat fluxes through the side walls are fully designed. However, the main interest in the 

discussed at the end of Section 4. present study is the conditions associated with the 



Instabilities in a double-diffusive thermosyphon 1321 

onset of motion from rest. For this the constant 
boundary conditions can easily be arranged. Moreover, 
laminar flow can be considered, and according to the 
results of refs. [18,19] we can adopt a one-dimen- 
sional model, with the friction coefficient taken as 
that for forced flow, i.e.f= 16/Re = 16v/2aV. 

It follows from these assumptions and from the 
continuity equation that the velocity in the loop is a 
function of the time, r, only having the same mag- 
nitude in the two branches 

V,(z) = V2(r) = V(z) (2) 

where the subscripts 1,2 denote channels with upward 
and downward flows, respectively. 

The momentum equation is integrated around the 
loop to eliminate the pressure terms, as usual in treat- 
ments of thermosyphons, cf. refs. [I, 2,8-lo] 

dV 9 -_= -- 
dz 20, 

,dZ+’ (3) 

where Z is the vertical coordinate and the above- 
mentioned friction correlation has been used in the 
last term of equation (3). The energy and diffusion 
equations for 
tributions are 

the temperature and salinity dis- 

where K, and 

aT aT 
$Vaz=Krg (4) 

+ upward flow (1) 
- downward flow (2) 

$Vg=K$$ 
z (5) 

KS are the thermal and saline diffu- 
sivities. The boundary conditions are 

T=T,, S=&, at Z=O (6a) 

T=T,, S=S,, at Z=L. (6b) 

The following transformations are used to define the 
dimensionless variables : 

z = Z/L, v E LVIK,, t = K,T/L= 
(7) 

e= (T-T,)/(T,-T,,), C#J = (S-S,)/(S,-S,). 

The governing equations (3k(S) and boundary con- 
ditions (6) are transformed to dimensionless form 

1 au I 

s 

I 

P at 
(e, -@,)dz-R, (4, -&)dz-0 (8) 

0 

ae ae a*8 
$v&=s (9) 

+ upward flow (1) 
- downward flow (2) 

(10) 

8=1, $=I at z=O (lla) 

B=O, $=O at z=l. (llb) 

This system of governing equations and boundary 
conditions includes the four dimensionless parameters 

RT ~ slb(T~ - T&a* 
16vK, 

thermal Rayleigh number 

R, ~ sM% -&Wa2 
16vK, 

saline Rayleigh number (12) 

2 
P 3 8 E 5 modified Prandtl number 

0 a v 

q = GI& inverse Lewis number. 

The thermal Rayleigh number is destabilizing 
(tends to create a loop flow) while the saline one is 
stabilizing. 

3. STEADY-STATE SOLUTIONS 

The steady-state solution, derived by Zvirin [9], is 
briefly reviewed here because it is needed for the stab- 
ility analysis in the next section. Also, the results of 
ref. [9] are extended here: additional information is 
presented, including discussions of new features of the 
solution. 

At steady state all the time derivatives in equations 
(8)-(10) vanish. As can be seen, the solution depends, 
then, only on the Rayleigh and Lewis numbers and 
not on the Prandtl number. The solution procedure is 
similar to other analytical solutions of free convection 
loops, cf. refs. [ 1,2,9, lo] : at the first stage, the energy 
and diffusion equations (9) and (10) are solved, with 
boundary conditions (11), for the temperature and 
salinity distributions in terms of the constant velocity, 
v, which is yet an unknown parameter 

e”= _ ev 
8, = M(z,v) = __ 

l-e” ’ 
e2 = M(~; -v) (13a) 

l#I, = N(z;qv) =z, & = N(z; -qv). (13b) 

These distributions are introduced now into the 
momentum equation (8), and the integrations are per- 
formed. The result is the following algebraic equation 
forv: 

R@+a>-R$g-;)=v. (14) 

In general, this equation must be solved numerically 
to obtain v(R,, R,, q). The solution procedure is quite 
simple, however, because equation (14) can be re- 
arranged such as to find R,(v ; Rs, q) by a straight- 
forward computation. The equation has a trivial, 
‘conductive’ solution, v = 0, discussed below. Figures 
2 and 3 show the results for the steady velocity of the 
‘convective’ solution, v, as a function of the thermal 
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FIG. 2. The dimensionless steady-state velocity, a (‘convective solution’), as a function of the thermal 
Rayleigh number, RT, for various values of the saline Rayleigh number, Rs. The inverse Lewis number is 

q = 2. 

*m L R.=OI 5 10 20 50 

V 
- - - unstable 

*20- 

RTC 

FIG. 3. The dimensionless steady-state velocity, u (‘convective solution’), as a function of the thermal 
Rayleigh number, RT, for various values of the saline Rayleigh number, Rs. The inverse Lewis number is 

4 = 100. 

Rayleigh number, R,, with the saline Rayleigh 
number, R,, as a parameter, and for two values of the 
inverse Lewis number, q = 2, 100. The most inter- 
esting feature of the steady-state flow is the existence 
of double solutions for q > 1 and Rs > 0. It is noted 
that multiple steady-state solutions have been pre- 
viously discovered in thermosyphons [20-231 and also 
in double-diffusive loops [&9]. The occurrence of 
multiple steady flows is caused by the non-monotonic 
dependence of the buoyancy forces (the integral terms 
in the momentum equation (8)) on the velocity, as 
explained by ref. [21]. 

The lines R, in Figs. 2 and 3 are the loci of the 
minimal values of R, on the curves for u. They can be 
obtained formally from equation (14) in the following 
way. The equation is rearranged, as mentioned above, 

to read R, = R,(v; R,,q). RTc is found from the 
condition dRr/dv = 0, which leads to 

(15) 

where 

BE 
e”+l 2 
m--i’ 

This equation can be solved, in principle, for 
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v, = uJR,,q), and the result introduced back into 
equation (14) to obtain R,(R,, q). 

For every value of q and R,, there does not exist a 
steady loop flow when RT < R,. These critical lines 
for the existence of steady states are shown in the 
stability charts on Figs. 4-6 as RTc (Rs) for various 
values of q. 

Reference [9] includes analytical approximations 
derived asymptotically from equation (14) for small 
and large values of the velocity u. The former also 
yields the limiting condition for u = 0 : RT = 6 + qR,. 

The results of ref. [lo] for a thermosyphon with a 

single gradient of temperature are obtained from the 
present solution by introducing R, = 0. No double 
solutions such as illustrated in Figs. 2 and 3 appear in 
this case. 

Let us examine now the rest state of no flow in the 
loop. As discussed in ref. [9], the ‘trivial solution’, 
u = 0, is related to the symmetry of the system: in a 
non-symmetric loop a flow would always be estab- 
lished upon activation of the driving mechanism (the 
heat source). In the loop treated here (Fig. l), there is 
no preferred direction thus for any positive solution, 
u, the mirror image flow, -v, is also a solution. 
This is a further multiplicity of the steady-state solu- 

tion. 
The temperature and salinity distributions are 

obtained from expressions (13) by inserting the 
steady-state velocity, u (the solution of equation 
(14)). For the rest case, we can introduce v = 0 into 
equations (9)( 1 1), and solve them to get 

(!I,,, = fj,,, = 1 -z, u = 0. (16) 

These profiles are also obtained by expanding equa- 
tions (13) for v -+ 0. The momentum equation (8) is 
identically satisfied by the solution (16) for the rest 
state. This solution for the no-flow situation is also 

referred to as the ‘conductive solution’, cf. [6]. 
The conductive solution would naturally be estab- 

lished when the system parameters are such that the 
rest state is stable. In an experimental system it is 
possible to obtain the no-flow solutions for unstable 
states by blocking the flow, using a conductive mem- 
brane. This was done [24] in a test with a completely 
stagnant channel of a multiple-loop system. 

We summarize now the results for the steady-state 
solutions for the double-diffusive thermosyphon (see 
also Figs. 2-6) : 

(a) A trivial ‘conductive’ solution, u = 0, always 
exists : for all values of R=, R, and q. 

(b) No flow solution for all q and R, when 
R, < R,. R, is determined from equation (15). 

(c) Double steady flow solutions for all q > 1, when 
R, > 0, in the range R, < R, ,< 6+qR, (the region 
between these two lines in Figs. 46). 

(d) A single steady flow solution for all q and R, 
when RT > 6+qR,. 

It is noted, again, that all flow solutions are pairs of 

FIG. 4. The stability chart in the Rayleigh numbers plane, 
RsR,, for the inverse Lewis number, q = 2. 

u and -u. For example, case (c) above includes five 

different solutions: the two pairs and the rest state 
u = 0. The term ‘exists’ means, here, a solution 
obtained from the governing steady-state equations 
(8)-(11). Actual ‘existence’ depends on the stability 
of the solutions, analyzed and discussed in the next 
section. 

4. STABILITY ANALYSIS 

4.1. The characteristic equations 

The method of linear stability analysis is employed 
for the investigation of the various steady-state solu- 
tions derived in the previous section. We start with 
the formulation for the steady flow solutions, and 
write the time-dependent velocity, temperature and 
salinity as 

v = U+t(e”‘, f3 = 8+$(z)e”‘, C#I = ++w(z)e”’ 

(17) 

where fi, 0 and 6 now denote the steady-state values : 
6 is the solution of equation (14) (results appear in 
Figs. 2 and 3) and Band 6 are obtained by introducing 
d into equations (13). The perturbations u, I,+ and w 
are considered small. For the stability study of the 
onset of motion from rest, d = 0 and 0 and 4 are 
given in equation (16). The stability parameter, cr, in 

equation (17) may generally be complex, and the state 
is unstable when Re (~7) > 0, while Re (a) = 0 yields 
the marginal stability. 

Expressions (17) are introduced into the time- 
dependent governing equations and boundary con- 
ditions (8Hll). The steady-state terms cancel ident- 
ically and second-order products such as U$ and uw 
are neglected. Thus the momentum, energy and 
diffusion perturbation equations are obtained 
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FIG. 5. The stability chart in the Rayleigh numbers plane, RsRT, for the inverse Lewis number, q = 10. 

q*I00 

FIG. 6. The stability chart in the Rayleigh numbers plane, R,-R,, for the inverse Lewis number, q = l&). 

The solution procedure is similar to that of the 
steady-stats problem; equations (19~{21) are solved, 
first, for the temperature and salinity perturbations II/ 

-R.V 
s 
*’ (w,-wz)dz (18) 

and o in terms of the velocity perturbation, u, which 
. IS an unknown constant. The derivatives dB/dz and 

d21d, - d$ &-__ .__g* = +,dB 

dd;/dz are obtained by d~~erentiation of equations 

dzZ+ dz 
(19) (13). The following solutions resemble those of ret 

-dz [ 161 for a thermosyphon with a temperature gradient 

+ upward steady flow (1) 
- downward steady flow (2) 

only, and for brevity we write o for the steady-state 
velocity (instead of 5) 

1 d’o _ _dw 
-2 SV& 
4 dz 

--(Tw = +udd; 
- dz 

(20) II/ I = -z ~T$T 

with the boundary conditions 

Ik, =*2=0, =(u2=0 at z=O,I. (21) 
+ (eY, _ eO) eYz2] _ e”” t22a) 
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$2=:&i e_,,!e_y, [(e-“-e-Yl)e-Y~” 

+(e-Y~-~e-“)e-Y~D]_e-“” I (22’4 

Y1.2 = :hJfJV+4~)1 t22c) 

0, = f4 P -~ 
(r 1-eQ” 1 

.._J.--[(el_e62)e6~Z 
ed!_eedZ 

+ (e’1 - eP) e+] _ e4”” 
1 

(23a) 

w =tt_Z!!_ 1 
2 g 1 -_eW i CXJjT 

[(e-q” _e-“l) e-&22 

+(e-62_e-~li)~-s~f]-e-~* 
1 

P-4 

a,,2 = ~[~~~(u2+4~/~)]. (23~) 

These temperature and salinity distributions are 
now introduced into the perturbation momentum 
equation (18). The constant u cancels out, and after 
the integrations are performed we get the charac- 
teristic equation for the stability parameter CT 

Y(a)= ;+l--Z(R,F-R,G)= 0 (24) 

where 

I;,’ (r 
i 

& & [~~e~-eYz)(eYi-l) 

+~(ey~-eU)(e~2-l) +1 
1 1 

(25a) 

G=:-t _-!?--__!-_- 
( Q l_ep es!_&2 [ 

J-(eP-e’~)(e+-l) 

+$(e6*-eqU)(e’2--l) +1 
Z 1 I . (25b) 

For the investigation of the stability associated with 
the onset of motion from rest, we introduce into equa- 
tions (19) and (20) 5 = 0 and the derivatives of di?/dz, 
dd;/dz from equation (16). The solutions for the tem- 
perature and salinity perturbations are presented in a 
simpler form compared to [lo, 161 

+-$2=~ l- 
{ 

&[e”+e”(i+)] (26a) 
> 

C=O 

w, = -@_+ l- 
1 

&-$P+e‘@-=)] (26b) 
1 

A=%&, P = J(P). (26c) 

Introducing these expressions into equation (18) 

and carrying out the integration we obtain the charac- 
teristic equation 

-&[l-$s]}=O. (27) 

It is noted that this equation can also be derived 
from equations (24) and (25) by a careful expansion 
for z? -B 0. Furthermore, for this case the perturbation 
dist~butions (22) and (23) reduce to those given by 
equation (26). 

The characteristic equations for the stability par- 
ameter, CT, are equation (27) for the onset of motion 
from rest and equation (24) for the stability of the 
steady flow solutions. The nature of the stability is 
determined by the behaviour of cr. In the following 
both equations are solved by various methods to 
derive the stability chart of the double-diffusive 
~e~osyphon. 

4.2. Stability associated with the onset of motion from 
rest 

There are two main types of ~rturbation growth 
associated with thermal or double-diffusive insta- 
bilities : 

(a) Monotonic instability, where u is real and the 
critical disturbance grows exponentially with time. 
This behaviour corresponds to the ‘principle of 
exchange of stability’ and on the marginal stability 
lines d = 0. 

(b) Oscillatory instability, where CT is complex, 
the critical perturbation growth is oscillatory and 
marginal stability is exhibited by steady oscillations, 
(T = iw and the amplitude neither increases nor decays. 

In the following we investigate the characteristic 
equation (27) to find marginal stability lines, 
Re (CT) = 0, in the form of R, = R,(R,; q; P) and 
stability regions in the Rayleigh numbers plane 

&-&. 
In previous stability analyses of the onset of motion 

in thermosyphons with a temperature gradient only 
[lo, 16,171 it was discovered that the instability associ- 
ated with initiation of motion from rest is monotonic. 
We therefore start by trying the marginal solution 
B = 0 for equation (27). Expanding this equation 
(with relations (26~)) for small real values of f~ and 
approaching the limit o -+ 0, we obtain 

RT=6fqRs 
monotonic marginal stability line (MMSL). (28) 

Condition (28) holds for all values of q and Rs. 
In ref. [IO] it was found that the critical Rayleigh 

number for the onset of motion in a thermosyphon 
with no mass diffusion is RT = 6. This result is obvi- 
ously a special case of the more general condition (28), 
with R, = 0. However, for the simple the~osyphons 
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treated in refs. flO,16,17] the critical Rayleigh num- 
bers for marginal stability of the ‘conductive solu- 
tions’ coincide with the minimai Rr values for the 
existence of steady flow solutions, which also cor- 
respond to the limiting velocity C = 0. In our case, a 
completely different behaviour is observed from the 
results of Section 3, see Figs. 2 and 3 : for q > 1, 
Rs > 0 there exist steady flow solutions for thermal 
Rayleigh numbers, RT, below the values given by equa- 
tion (28) for which E? = 0. The critical RT for a steady 
flow is given by R, (R,; q), as in Figs. 2 and 3. These 
two lines, which are independent of the modified 
Prandtl number, P, are included in the complete stab- 
ility charts for various WlheS of q and P, Figs. 4-6. 

We now return to the characteristic equation (27) 
and investigate it, looking for possible oscillatory 
instabilities of the rest state, In particular, it is inter- 
esting to find whether the critical line RTc is a marginal 
stability line. This investigation has been performed 
in two stages. The first consisted of using the Nyquist 
criterion in order to get a preliminary indication for 
the existence of oscillatory unstable disturbances. 
According to this method, cf. ref. 2251, &he complex 
function Y&w) is plotted for -CC < w < co. If the 
curve for a given combination of R7., Rs, q and P 
encircles the origin in the complex Y-plane, the state 
specified by these parameters is unstable.? The results 
of numerical calculations performed by this procedure 
showed that there are, indeed, oscillatory unstable rest 
states for various values of the system parameters. 
Moreover, such instabilities appear both below and 
above the line R, in Figs. 4-6, which indicates that 
this line does not represent marginal stability of the 
rest state. In the second stage a method suggested by 
ref. [IS] has been employed : equation (27) is 
rearranged in the form R, = f?,(iw; R,<,q, P), where 
R”,- is a complex function of w. At a point of marginal 
stability for some Rs, q and P, Im [&(w)] = 0 because 
the parameter Ryis real. Thus by solving this equation 
we obtain the frequency, w, of the critical disturbance. 
This value of w is finally used to calculate 
R, = Re [RAW)], giving a point on the marginal stab- 
ility line for the specified parameters Rs, q and P. 

The results are shown in the stability charts pre- 
sented in Figs. 4-6 for three different values of the 
inverse Lewis number, cl. Each chart in the plane 
of the saline and thermat Rayleigh numbers R,, RT. 
includes three (solid) oscillatory marginal stability 
lines (OMSL) for three values of the modified Prandtl 
number, P. As can be seen, these are nearly straight 
lines; however, the numerical solution reveals that 
they curve, especially in the vicinity of the points 
where they branch off the monotonic marginal stab- 
ility line (MMSL} given by equation (28). The bifur- 
cation points are obtained from equation (27): the 

.I -.-_ -. ._-. __ 
Pit is noted that Y,. defined in equation (27), does not 

have any pole in the half plane Re (a) 2 0 (including the 
point (r = 0, which has already been treated above). 

Table I. Bifurcation points of the monotonic and oscillatory 
stability lines: values of the saline and thermal Rayleigh 
numbers, Rz and R$, for various values of the inverse Lewis 
number, q, and the modified Prandtl number, P (see also 

Figs. 4-6). 

P 

4 0.1 1 10 

2 R,+ 303 33 6 
Rb 612 72 I8 

10 2 6.733 0.733 0.133 
r 73.33 13.33 7.333 

100 2 0.0612 0.00667 0.001212 
T 12.12 6.667 6.1212 

complex function Y,(iw) is expanded for small values 
of w and its limit for w --+ 0 is sought. Two coupled 
equations are thus obtained, Re (Y,) = Im (Y,) = 0. 
One of them (the latter) obviously reduces to relation 
(28) (the point lies on this MMSL). The former equa- 
tion, together with this relation, leads to the following 
expressions for the bifurcation points of the mono- 
tonic and oscillatory marginal stability lines : 

6(1+10/P) 
R>; = -~tiZV ; RF = 6+qR.$. (29) 

Table 1 includes the coordinates of these points for 
ali the values of q and P in Figs. 4-6. 

It is noted that the most interesting stability 
phenomena occur in the first quadrant (positive R7. 
and R,) of the charts in Figs. 4-6. As shown in the 
figures, the MMSL extends into the third quadrant. 
Any state (point) above it, including the whole second 
quadrant, is unstable. The entire fourth quadrant lies 
in the stability zone. 

The stability charts presented in Figs. 4-6 depict 
several interesting phenomena. The most ‘peculiar’ 
behaviour is that the oscillatory marginal stability 
lines intersect the critical line, R,, for existence of a 
steady flow solution. There is no such soiution below 
the line R,, while the stable region (for small dis- 
turbances) for any value of P lies below the cor- 
responding OMSL. Thus for any point (state) located 
in a region such as I in Fig. 5 (for q = IO, P = O.l), 
there are steady flow solutions inside the domain of 
linear stability. This is referred to as a region of sub- 
critical instability, and was discovered also by the 
analysis of ref. [6] (neglecting thermal and mass diffu- 
sivities). The implication of the existence of this 
phenomenon is that while the linear stability predicts 
a decay of any disturbance, there are some per- 
turbations that do grow, and only a more exact non- 
linear model would be capable of tracing them. 

Let us examine now the states represented by points 
in a region such as II in Fig. 5 (for q = 10 and P = 0.1, 
again). Although they are linearly unstable, no steady 
flow solutions are established for the parameters 
defining them. This indicates that a small disturbance 
would initially grow, but then non-linear effects inter- 
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fere, leading to either a decay to the rest state or to a 
transient behaviour, possibly of a ‘chaotic’ type. As 
mentioned above, the latter has been predicted for 
thermosyphons [ 1 l-l 31, and for a loop with the Soret 
effect [8]. It is noted that a region of this type is not 
found by the simplified model of ref. [6]. Furthermore, 
a non-linear analysis was used in ref. [6] to show 
that in the linearly stable region where steady flow 
solutions do not exist (equivalent to the domain below 
both R, and OMSL in our case), all the solutions 
decay, i.e. it is a region of global stability. This non- 
linear analysis was not carried on in ref. [6] to inves- 
tigate the region of type I in Fig. 5. Such an analysis 
is beyond the scope of the present study and is left for 
future work. 

A complete description of the stability charts in 
Figs. 4-6 is given in Section 5. 

4.3. Stability oj’the steadyflow solutions 
The stable nature of the steady flow solutions is 

determined by the characteristic equation (24). We 
check, first, whether there are any monotonic insta- 
bilities of the steady-state flows. For this, expressions 
F and G in equation (25) are expanded for small real 
values of u, and the limit cr --P 0 is approached, to yield 

F”=FIOxO=[~-&] (30a) 

(30b) 

The velocity, u, in these relations is the solution of 
equation (14). We therefore introduce R,(u ; Rs, q) 
from equation (14), F” and G” from equation (30) and 
cr = 0 into equation (24). The resulting relationship 
between Rs, q and v obtained in this way is exactly 
equation (15), which together with equation (14) 

. 
define the critical hne R,. This is the critical line for 
the thermal Rayleigh number below which there does 
not exist any steady flow solution and it also separates 
the double steady solutions, see Figs. 2 and 3. Thus the 
critical line R,, in addition, is a monotonic marginal 
stability line for the steady flow solutions. 

The Nyquist criterion (Section 4.2) has been used 
to find the stability regimes of the steady flows, in the 
stability charts of the Rayleigh numbers plane, Figs. 
4-6. The results of the numerical computations show 
that in the range of double solutions (between the 
lines MMSL and RTc in Figs. 4-6), all the steady flows 
with the lower velocity-below the lines R, in Figs. 
2 and 3, are unstable,? while all the flows with the 
higher velocity (above the lines RTc) are stable. In the 
range where a single steady solution exists, i.e. above 
the lines MMSL in Figs. 46, the solution is stable. 
Furthermore, the results obtained by the numerical 
calculations based on the Nyquist method show that 
there does not exist any oscillatory instability in the 

Tin ref. [7] it is merely hinted that such a solution is 
‘expected to be unstable’. 

whole domain of the system parameters RT, Rs, q 
and P. This result may seem rather surprising at first 
glance, because it is well known that steady flow solu- 
tions of thermosyphons are unstable in some range of 
system parameters. However, as shown in ref. [16] for 
a loop with a temperature gradient only, the solution 
for small thermal conduction (high values of RT) cor- 
responds to the low-velocity stable region found by 
Welander [26] for the vertical thermosyphon. A finite 
conductivity or thermal and mass diffusivities are sta- 
bilizing factors, thus the steady solutions of the loop 
under consideration are stable as indicated above. 

It is noted that the result obtained here, that the 
flow with lower velocity in the case of multiple steady 
flow solutions is unstable, is not general. In other 
thermosyphons where multiple solutions have been 
observed [2&23], there is no general rule for stability. 
All the solutions or some of them can be stable or 
unstable and the instabilities are always of the oscil- 
latory type, as in loops with a temperature gradient 
only, cf. ref. [lo]. Here the marginal stability line is 
for monotonic growth of the disturbances. 

In the system treated here, the side walls were 
assumed to be insulated. The effects of transverse heat 
and mass fluxes have been investigated for the toroidal 
loop in refs. [6, 7, 11-131 (without axial conduction 
and diffusion), in ref. [8] without axial conduction but 
with axial diffusion, including the Soret effect, and 
finally in ref. [17] with thermal conduction. As pointed 
out in ref. [ 171, the Rayleigh numbers defined in these 
previous studies are based on transverse heat and 
mass convection coefficients. When axial diffusions 
are considered the effects of these coefficients are 
expressed by Biot numbers, Bi. It is shown, indeed, in 
ref. [17] that the results of ref. [12], for example, are 
the asymptotic expansions for large Rayleigh and Biot 
numbers. In the range of small R and Bi an interesting 
phenomenon has been obtained in ref. [17], namely a 
minimum for the function of the critical Rayleigh 
number, R, (Bzl, for the onset of motion. From this 
we can also learn about the possible effects of trans- 
verse heat fluxes in the system considered here. If 
the heat convection coefficient is small and increasing 
from zero, the critical Rayleigh number of the rest 
state would decrease, because of the increase of the 
driving force caused by heating or cooling from the 
side. When this coefficient becomes large, the tem- 
perature variations around the loop tend to smooth 
out, causing a decrease of the driving force and an 
increase of the critical Rayleigh number. Thus a mini- 
mum for the curve of the latter as a function of the 
Biot number is expected here too. 

5. SUMMARY 

Several types of instabilities have been discovered 
by the theoretical analysis of the double-diffusive ther- 
mosyphon shown in Fig. 1 : those associated with the 
onset of motion and others involving multiple steady 
flow solutions (see Figs. 2 and 3) and their stability. 
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The method to derive the complete linear stability 
chart, including all these phenomena, is described in 
Sections 3 and 4. Here we summarize the results shown 
in Figs. 4-6, which include the charts in the Rayleigh 
numbers plane RrRr for three values of the inverse 
Lewis number, q and for various modified Prandtl 
numbers, P. 
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INSTABILITES DANS UN THERMOSIPHON DOUBLEMENT DIFFUSIF 

R&m&-On Btudie le comportement stationnaire et la stabiliti d’une boucle de circulation naturelle 
doublement diffusive. Dans le thermosiphon con&u& par deux canaux verticaux, le fluide est soumis $ 
des gradients de tempkrature et de salinitk. Les equations de continuiti, de quantite de mouvement, 
d’tnergie et de diffusion de masse sont &rites pour un modtle unidirectionnel et un Bcoulement laminaire. 
Les solutions permanentes incluent le cas trivial “conductif” sans vitesse dans la boucle (u = 0) et les 
solutions de convection lorsque le nombre de Rayleigh thermique R, d&passe une valeur critique RTc qui 
dtpend du nombre de Rayleigh de salinitt R, et du nombre inverse de Lewis 4. Dans un certain domaine 
des paramktres du syst&me, les “solutions de convection double” sont obtenues. Les rCsultats de l’analyse 
de stabilitir lineaire montrent que ceux pour v plus faible sont toujours instables et que les autres sont 
stables. Le graphe de stabilitk, dans le plan R,- R, obtenu par cette analyse, concerne aussi une description 
des instabilitbs assocites avec la mise en mouvement depuis le repos. Les front&es de stabilitt marginale 
monotone (MMSL) R, = 6+qR,, celles oscillatoires (OMSL) qui dtpendent aussi du nombre de Prandtl 
et bifurquent $ partir de MMSL. Un phtnomene inttressant, montrt? par la solution, est que OMSL coupe 

la courbe R,, reprksentant les conditions critiques pour l’existence de solutions permanentes. 

INSTABILITATEN IN EINEM DURCH TEMPERATUR- UND 
KONZENTRATIONSUNTERSCHIEDE BETRIEBENEN THERMOSYPHON 

Zusammenfassnng-Der stationlre Zustand und das Stabilititsverhalten eines Naturumlaufs wurden theore- 
tisch untersucht. Das Fluid in dem aus zwei vertikalen Kaniilen bestehenden Thermosyphon unterliegt 
sowohl einem Temperatur- als such einem Salzgehaltsgradienten. Die Erhaltungsgleichungen fiir Masse, 
Impuls, Energie und Stofftransport wurden auf der Grundlage eines eindimensionalen Modells fiir laminare 
Striimung aufgestellt. Die Liisungen fiir den stationlren Fall beinhalten den trivialen Fall der Wlrmeleitung 
bei der Str6mungsgeschwindigkeit v = 0 und Ergebnisse fiir konvektive Striimung, wenn nlmlich die 
thermische Rayleigh-Zahl RT einen kritischen Wert R, iiberschreitet, der von der Salzgehalts-Rayleigh- 
Zahl R, und der inversen Lewis-Zahl q abhiingt. In einem bestimmten Bereich der Systemparameter erhllt 
man fiir den konvektiven Fall zweifache LBsungen. Die Ergebnisse der linearen Stabilitltsanalyse zeigen, 
daB die Liisung mit der niedrigeren Geschwindigkeit immer instabil und alle anderen LBsungen fiir 
stationlre StrBmung stabil sind. Das von dieser Untersuchung abgeleitete Stabilitiitsschaubild in der Rs 
RTEbene enthiilt auBerdem eine Beschreibung der mit dem Einsetzen der Bewegung aus dem Ruhezustand 
verbundenen InstabilitHt. Die Stabilitltsgrenzen beinhalten die momentanen StabilitLtslinien (MMSL) 
R, = 6+qR, und die Stabilitltslinien fiir Oszillation (OMSL), die aul3erdem von der Prandtl-Zahl 
abhHngen und von der MMSL aufgespalten werden. l%n durch die Liisung dargelegtes interessantes 
Phtiomen ist, dal3 OMSL die Linie RTC schneidet, welche letztere die kritischen Bedingungen fiir die Existenz 

der Lasungen einer stationlren Strijmung darstellt. 

HEYCTO@IABOCTB B TEPMOCH@OHE C HBOtiHOti AH@@Y3WEti 

hHOTaUEn---TeOpeTHYeCKH H3y'IaiOTCK CTauHOHapHbIe FIlleHHR W HX yCTOihHBOCTb B 3aAa'IaX AJIK 

KOHTypa C ABOiiHOii AH@$y3&ieii. Ha IKIiAKOCTb B TepMOCH@OHe, COCTORIAeM H3 AByX BepTHKaJIbHbIX 

KammoB, BosAeficTByeT KaK TehfnepaTypmii rpaAHeHT, TaK R rpameaT conemcTH. OnpeAenrro~He 

ypaBHeHHKHepa3pblBHOCTEi,ABHX(eHHfi,3Hep~IfH HAH@$y3HH 3alIHCaHbIHaOCHOBeOAHOMepHOjiMOAeAH 

AJIll JIaMHHapHOrO TeSeHWII. CTauHOHapHbIe peI"eHHK BKJTIOSaH)T KBK TpuBHaAbHOe <<KOHAyKTHBHOeN 

lLWLleH%E-AJIKCAy'IaKOTCyTCTBHKItOTOKa B KOHType,O = O,TaK BAAll<<KOHBeKTBBHOTON Te'feHHK,KO,-Aa 

TeIlJIOBOe 'i&iCAO P3JIeK R, IIpeBbIUlaeT er0 KpHTWeCKOe 3Ha'IeHHe R,,, 3aBHCllL"ee OT WiCAa P3JleR 

COneHOCTU R,u 06paTHOrO%WIa~bmHCaq. B HeKOTOpOMAEiaua3oHenapaMeTpOBCHCTeMbI IIonyreHbI 

ABO%HbIe~~KOHBeKTHBHbIeN ~IUeH~K.Pe3yAbTaTbIaHaJIH3aIIOA~HefiHOfi TeOpHHyCTOiiWBOCTH uOKaSbi- 

BaIOT, ST0 Te’feHWIl C MeHblUWM ” BCel-Aa HeyCTOhiBbI, a BCe OCTaJIbHble CTauHOHapHbIe petlIeH&iR 

IIBnnH)TCn ycrOi+mBbIMn. Kpwsan ycroi+iHsocrH B ILWJCKOCTH R, - R,, nonyqemian c noMombm 3Toro 
aHUH3a, KpOMe TOrO BKJIIOSaeT OrIHCaHHe HeyCTOihBOCTei?, CBI13aHHbIX C B03HHKHOBeHBeM ABN~eHNII 

B3 COCTOIIHHll IIOKOIl. rpaWiUbl MaprHHaJIbHOfi yCTOihHBOCTH BKJIIWGUOT JIBHUH MOHOTOHHOti Mapl-W 

HaJIbHOii yCTOkWBOCTH (JIMMY) R, = 6 + qR, II OCWiJIAIILWOHHOti MapI-EiHiUlbHOii yCTOi+iHBOCTH 

(nOMY), KOTOpbIe 3aBHCIIT OT WDa npaHATnK U OTBeTBnmTCR OT JIMMY. &fHTepCHbIe 3@@KTbI, 

BbITeKasoIwie 83 perueeen, COCTOnT B TOM, VT0 JIOMY nepeceKaeT nHHHH3 R,, npeAcTasnnn co6ol 


